
Doubly Linked Lists
Lecture 20

Section 17.5

Robb T. Koether

Hampden-Sydney College

Mon, Mar 6, 2017

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 1 / 13



1 Doubly Linked Lists

2 Doubly Linked List Nodes

3 Inserting and Deleting

4 Assignment

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 2 / 13



Outline

1 Doubly Linked Lists

2 Doubly Linked List Nodes

3 Inserting and Deleting

4 Assignment

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 3 / 13



Doubly Linked Lists

Adding a tail pointer to the LinkedList class greatly helped the
pushBack() function, but it did not help the popBack() function.
That was because we could not “back up” from the tail.
To facilitate both pushBack() and popBack(), we could add
“backward” pointers to every node.
Then we could back up from any node to its predecessor.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 4 / 13



Doubly Linked Lists

Definition (Doubly Linked List)
A doubly linked list is a linked list in which each node has two links: a
forward link to its successor node and a backward link to its
predecessor node.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 5 / 13



Outline

1 Doubly Linked Lists

2 Doubly Linked List Nodes

3 Inserting and Deleting

4 Assignment

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 6 / 13



Doubly Linked List Node Data Members

DoublyLinkedListNode Data Members
T m_value - The value stored in the node.
DoublyLinkedListNode* m_prev - A pointer to the previous
node.
DoublyLinkedListNode* m_next - A pointer to the next node.

A doubly linked list must use doubly linked list nodes.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 7 / 13



Doubly Linked List Data Members

DoublyLinkedList Data Members
int m_size - Number of elements in the list.
DoublyLinkedListNode* m_head - Pointer to the first node.
DoublyLinkedListNode* m_tail - Pointer to the last node.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 8 / 13



Chasing Pointers

We can move both forwards and backwards in the list.
When chasing pointers, it is not necessary to keep a pointer to the
previous node.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 9 / 13



Outline

1 Doubly Linked Lists

2 Doubly Linked List Nodes

3 Inserting and Deleting

4 Assignment

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 10 / 13



Inserting and Deleting in a Doubly Linked List

Apply the 12-step method to
Insert a node into a doubly linked list.
Delete a node from a doubly linked list.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 11 / 13



Outline

1 Doubly Linked Lists

2 Doubly Linked List Nodes

3 Inserting and Deleting

4 Assignment

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 12 / 13



Assignment

Assignment
Read Section 17.5.

Robb T. Koether (Hampden-Sydney College) Doubly Linked Lists Mon, Mar 6, 2017 13 / 13


	Doubly Linked Lists
	Doubly Linked List Nodes
	Inserting and Deleting
	Assignment

